直线与平面的垂直关系.ppt
上传人:天马****23 上传时间:2024-09-11 格式:PPT 页数:19 大小:1.1MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

直线与平面的垂直关系.ppt

直线与平面的垂直关系.ppt

预览

免费试读已结束,剩余 9 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

课前自主学案2.三垂线定理:在平面内的一条直线,如果它和这个平面的一条______________垂直,那么它也和这条斜线垂直.3.三垂线定理的逆定理:在平面内的一条直线,如果它和这个平面的一条______垂直,那么它也和这条斜线在平面内的射影垂直.课堂互动讲练例2如图,在正方体ABCD-A1B1C1D1中,E、F分别是棱B1C1、B1B的中点.求证:CF⊥平面EAB.关于定理的应用,首先是找出平面的垂线,至于射影则是由垂足,斜足来确定的,因而是第二位的,由此,我们可以得出三垂线定理证明a⊥b的一个程序:一垂、二射、三证,即:第一:找平面及平面的垂线;第二:找射影线(或斜线),这时a,b便成为平面内的一条直线及一条斜线(或射影);第三:证明射影(或斜线)与直线a垂直,从而得出a,b垂直.∴BF⊥平面PAC,则FM是BM在平面PAC上的射影,∵BM⊥PC,根据三垂线定理的逆定理,得FM⊥PC,从而PC⊥平面BFM.又OQ⊂面BFM,∴OQ⊥PC,又PC∩BC=C,∴OQ⊥平面PBC..如图,正方体ABCD-A1B1C1D1中,E、F分别是BB1、CD的中点.在AE上求一点M,使得A1M⊥平面DAE.作业1:已知长方体AC1中,棱AB=BC=1,棱BB1=2,连接B1C,过B作B1C的垂线交CC1于E,交B1C于F.求证:A1C⊥平面EBD.作业3.如图,正方体ABCD-A1B1C1D1中,E、F分别是BB1、CD的中点.在AE上求一点M,使得A1M⊥平面DAE.(2)由于点M在线段AE上,所以可设=λ=λ(0,2,1)=(0,2λ,λ),可得M(2,2λ,λ),于是=(0,2λ,λ-2),要使A1M⊥平面DAE,需有A1M⊥AE,即·=(0,2λ,λ-2)·(0,2,1)=5λ-2=0,得λ=.故当AM=AE时,A1M⊥平面DAE.