如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
等差数列讲义1.已知数列{an}满足a1?1,an?1?an?1,求an?A组_______.1.n.提示:易知{an}是等差数列,an=1+1×(n-1)=n.2.2005是数列7,13,19,25,31,?,中的第2.334.提示:an=7+6(n-1)=6n+1,3.等差数列?an?中,S10?120,那么a1?a10?3.24.提示:S10?1(a1?a10)02?120,a1?a10?24.项..4.在等差数列{an}中,已知a3?10,a9?28,则a12的值为_____.4.提示:a9-a3=6d=18,得d=3.a12=a3+3(12-3)=37.25.已知a1,a2,a3,a4成等差数列,a1,a4为方程方程2x?5x?2?0的两根,a2?a3等于且则。5.52。提示:由韦达定理知a1?a4=52,又a2?a3=a1?a4=2a1+3d.∴a2?a3=。52.6.等差数列?an?的前n项和为Sn,若S3?3,S6?7,则S9等于6.12.提示:由?an?是等差数列知S3,S6?S3,S9?S6成等差数列,即2?4?3??S9?7?,解得7.在等差数列?an?中,a4?0.8,a11?2.2,则a51?a52???a80=7.393.提示:a11-a4=7d=1.4,∴d=0.2.a51=0.8+0.2(51-4)=10.2,a80=0.8+0.2(80-4)=16.a51?a52???a80=S10?3(a51?a80)02?393.1anan?18.已知数列{an}的通项公式an=2nn?1n?121n?11?2???nn1,bn=,则{bn}的前n项和为12?1n?2)?2nn?2。8..an?,bn?4(?n?2),Sn?b1?b2???bn?4(.9.求出下列等差数列中的未知项:(1)m,3,5,n;(2)3,m,n,-9,p,q.解(1)该数列为等差数列,公差为5-3=2,所以m=3-2=1,n=5+2=7.(2)该数列为等差数列,公差为(-9-3)÷3=-4,所以m=3+(-4)=-1,n=-1+(-4)=-5,p=-9+(-4)=-13,q=-13+(-4)=-17.110.(1)设{an}是等差数列,求证:数列{Snn}是等差数列.S20072007S20052005(2)在等差数列?an?中,a1??2008,其前n项的和为Sn,若10.证明:因为{an}是等差数列,所以Sn=na1?从而Snn??2,求S2008.n(n?1)2d,d2=a1?(n-1)·d,即数列{S20072007?S20052005Snn}是等差数列,且其公差d1=.(2)设公差是d,由?2,得?a1?1003d???a1?1002d??2,?d?2,?S2008?2008a1?1004?2007d?2008??a1?2007???200811.已知正项数列?an?满足a1?12,且an?1?an1?an.(1)求正项数列?an?的通项公式;(2)求和a11?a22an1?an????ann11.解由an?1?.可变形为:an?1an?an?1=an∴1an?1?1an=1。∵a1?12∴数列??1??是首项为2,公差为1的等差数列.?an?1n?11an?2?n?1?n?1,∴an?。(2)a11?a22????ann?12?1?13?2???1(n?1)n?1?12?12?13???1n?1n+1?1?1n+1212.下表给出一个“等差数阵”:47()(7((??ai1)()()()(??ai5ai4))))????????????a1ja2j??????????????12)()(??ai2()()(??ai3)()()(a3ja4j????aij????????????其中每行、每列都是等差数列,aij表示位于第i行第j列的数。(I)写出a45的值;(II)写出aij的计算公式;解:(I)a45?49(详见第二问一般性结论)。??(II)该等差数阵的第一行是首项为4,公差为3的等差数列:a1j?4?3(j?1);等差数列,因此aij?4?3(i?1)?(2i?1)(j?1)?2ij?i?j?i(2j?1)?j第二行是首项为7,