如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
1.2正余弦定理的应用举例解应用题中的几个角的概念测量问题:②两点能相互看到,但不能到达。例1、设A、B两点在河的两岸,要测量两点之间的距离。解:根据正弦定理,得③两点都不能到达例2、A、B两点都在河的对岸(不可到达),设计一种测量两点间的距离的方法。解:测量者可以在河岸边选定两点C、D,测得CD=a,并且在C、D两点分别测得∠BCA=α,∠ACD=β,∠CDB=γ,∠BDA=δ.在⊿ADC和⊿BDC中,应用正弦定理得例3:如图,要测底部不能到达的烟囱的高AB,从与烟囱底部在同一水平直线上的C,D两处,测得烟囱的仰角分别是α=35°12′和β=49°28′,CD间的距离是11.12m.已知测角仪器高1.52m,求烟囱的高.例4在山顶铁塔上B处测得地面上一点A的俯角α=54°40′,在塔底C处测得A处的俯角β=50°1′已知铁塔BC部分的高为27.3m,求出山高CD(精确到1m)CD=BD-BC≈177-27.3=150(m)作业8.如图,在海岸A处发现北偏东45°方向,距A处(-1)海里的B处有一艘走私船.在A处北偏西75°方向,距A处2海里的C处的我方缉私船,奉命以海里/时的速度追截走私船,此时走私船正以10海里/时的速度,从B处向北偏东30°方向逃窜.问:缉私船沿什么方向行驶才能最快截获走私船,并求出所需时间例5:一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧远处一山顶D在西偏北15°的方向上,行驶5km后到达B处,测得此山顶在西偏北25°的方向上,仰角8°,求此山的高度CD.解:在⊿ABC中,∠C=25°--15°=10°.根据正弦定理,例6一艘海轮从A出发,沿北偏东75°的方向航行67.5nmile后到达海岛B,然后从B出发,沿北偏东32°的方向航行54.0nmile后到达海岛C.如果下次航行直接从A出发到达C,此船应该沿怎样的方向航行,需要航行多少距离(角度精确到0.1°,距离精确到0.01nmile)?所以,∠CAB=19.0°,75°-∠CAB=56.0°.