[优选文档]函数模型及其应用PPT.ppt
上传人:天马****23 上传时间:2024-09-10 格式:PPT 页数:45 大小:2.6MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

[优选文档]函数模型及其应用PPT.ppt

[优选文档]函数模型及其应用PPT.ppt

预览

免费试读已结束,剩余 35 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

函数模型及其应用2.三种函数模型的性质【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)某种商品进价为每件100元,按进价增加25%出售,后因库存积压降价,若按九折出售,则每件还能获利.()(2)幂函数增长比直线增长更快.()(4)在(0,+∞)上,随着x的增大,y=ax(a>1)的增长速度会超过并远远大于y=xa(a>0)的增长速度.()(5)“指数爆炸”是指数型函数y=a·bx+c(a≠0,b>0,b≠1)增长速度越来越快的形象比喻.()【答案】(1)√(2)×(3)×(4)√(5)×1.(教材改编)已知某种动物繁殖量y(只)与时间x(年)的关系为y=alog3(x+1),设这种动物第2年有100只,到第8年它们发展到()A.100只B.200只C.300只D.400只【解析】由题意知100=alog3(2+1),∴a=100.∴y=100log3(x+1),当x=8时,y=100log39=200.【答案】B2.若一根蜡烛长20cm,点燃后每小时燃烧5cm,则燃烧剩下的高度h(cm)与燃烧时间t(h)的函数关系用图象表示为()【解析】根据题意得解析式为h=20-5t(0≤t≤4),其图象为B.【答案】B3.用长度为24的材料围一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为()A.3B.4C.6D.12题型一用函数图象刻画变化过程【例1】(1)小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图象是()(2)(2018·日照模拟)物价上涨是当前的主要话题,特别是菜价,我国某部门为尽快实现稳定菜价,提出四种绿色运输方案.据预测,这四种方案均能在规定的时间T内完成预测的运输任务Q0,各种方案的运输总量Q与时间t的函数关系如图所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的是()【解析】(1)小明匀速运动时,所得图象为一条直线,且距离学校越来越近,故排除A.因交通堵塞停留了一段时间,与学校的距离不变,故排除D.后来为了赶时间加快速度行驶,故排除B.故选C.(2)由运输效率(单位时间的运输量)逐步提高得,曲线上的点的切线斜率应该逐渐增大,故函数的图象应一直是下凹的,故选B.【答案】(1)C(2)B【思维升华】判断函数图象与实际问题变化过程相吻合的两种方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象.(2)验证法:当根据题意不易建立函数模型时,则根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.跟踪训练1设甲、乙两地的距离为a(a>0),小王骑自行车以匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又以匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y和其所用的时间x的函数图象为()【解析】y为“小王从出发到返回原地所经过的路程”而不是位移,应随时间增大而增大,故排除A,C;又因为小王在乙地休息10分钟,故排除B,故选D.【答案】D题型二已知函数模型的实际问题【例2】(1)某航空公司规定,乘飞机所携带行李的质量(kg)与其运费(元)由如图的一次函数图象确定,那么乘客可免费携带行李的质量最大为________kg.(2)一个容器装有细沙acm3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,tmin后剩余的细沙量为y=ae-bt(cm3),经过8min后发现容器内还有一半的沙子,则再经过________min,容器中的沙子只有开始时的八分之一.(2)一个容器装有细沙acm3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,tmin后剩余的细沙量为y=ae-bt(cm3),经过8min后发现容器内还有一半的沙子,则再经过________min,容器中的沙子只有开始时的八分之一.【例1】(1)小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图象是()(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x·v(x)可以达到最大,并求出最大值.(精确到1辆/小时)判断下列结论是否正确(请在括号中打“√”或“×”)【答案】(1)C(2)B(1)某种商品进价为每件100元,按进价增加25%出售,后因库存积压降价,若按九折出售,则每件还能获利.判断下列结论是否正确(请在括号中打“√”或“×”)【解析】(1)光线通过1块玻璃后,强度y=(1-10%)k=0.3.用长度为24的材料围一矩形场地,中间加两道隔墙,要使矩形的面积最