如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
函数模型及函数的综合应用文档pptA组自主命题·北京卷题组1.(2015北京,8,5分,0.85)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是 () A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时.相同条件下,在该市用丙车比用乙车更省油2.(2015北京文,8,5分)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.B组统一命题、省(区、市)卷题组考点一函数的实际应用1.(2014湖南,8,5分)某市生产总值连续两年持续增加,第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为 ()A. B. C. D. -12.(2018浙江,11,6分)我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,鸡雏个数分别为x,y,z,则 当z=81时,x=,y=.3.(2015四川,13,5分)某食品的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=ekx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是小时.考点二函数的综合应用(2014山东,15,5分)已知函数y=f(x)(x∈R),对函数y=g(x)(x∈I),定义g(x)关于f(x)的“对称函数”为函数y=h(x)(x∈I),y=h(x)满足:对任意x∈I,两个点(x,h(x)),(x,g(x))关于点(x,f(x))对称.若h(x)是g(x)= 关于f(x)=3x+b的“对称函数”,且h(x)>g(x)恒成立,则实数b的取值范围是.解析函数g(x)= 的图象是以坐标原点为圆心,2为半径的圆在x轴上及其上方的部分.由题意可知,对任意x0∈I,都有h(x0)+g(x0)=2f(x0),即(x0,f(x0))是点(x0,h(x0))和点(x0,g(x0))连线的中点,又h(x)>g(x)恒成立,所以直线f(x)=3x+b与半圆g(x)= 相离且b>0,即 解之得b>2 .所以实数b的取值范围为(2 ,+∞). C组教师专用题组考点一函数的实际应用1.(2010北京,14,5分)如图放置的边长为1的正方形PABC沿x轴滚动.设顶点P(x,y)的纵坐标与横坐标的函数关系式是y=f(x),则f(x)的最小正周期为;y=f(x)在其两个相邻零点间的图象与x轴所围区域的面积为.说明:“正方形PABC沿x轴滚动”包括沿x轴正方向和沿x轴负方向滚动.沿x轴正方向滚动指的是先以顶点A为中心顺时针旋转,当顶点B落在x轴上时,再以顶点B为中心顺时针旋转,如此继续.类似地,正方形PABC可以沿x轴负方向滚动. 解析由题意知正方形分别以A、B、C、P为旋转点滚动一次,P点轨迹重复出现,P点轨迹如图所示,故f(x)的最小正周期为4.y=f(x)在其两个相邻零点间的图形与x轴所围区域如图阴影部分所示. 图形由两个半径为1的 圆及两个边长为1的正方形和一个半径为 的弓形组成,其面积S=2× π×12+2+ π×( )2- ×2×1= +2+ -1=π+1.2.(2015江苏,17,14分)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1所在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y= (其中a,b为常数)模型.(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t.①请写出公路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度. 解析(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5).将其分别代入y= ,得 解得 (2)①由(1)知,y= (5≤x≤20),则点P的坐标为 , 设在点P处的切线l交x,y轴分别于A,B点,y'=- ,则l的方程为y- =- (x-t),由此得A ,B .故f(t)= = ,t∈[5,20].②设g(t)=t2+ ,则g'(t)=2t- .令g'(t)=0,解得t=10