如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
(1)中,是怎样表示气温T与时间t之间的函数关系的?(2)正方形的面积S与边长x的取值如下表,可知S是x的函数.(3)某城市居民用的天然气,1m3收费2.88元,使用x(m3)天然气应缴纳的费用y(元)为y=2.88x.可知y是x的函数.像(1)这样,建立平面直角坐标系,以自变量取的每一个值为横坐标,以相应的函数值(即因变量的对应值)为纵坐标,描出每一个点,由所有这些点组成的图形称为这个函数的图象,这种表示函数关系的方法称为图象法.(2)正方形的面积S与边长x的取值如下表,可知S是x的函数.问题3:你能谈谈用图象法、列表法、公式法表示函数关系时各自的优点吗?n个(1)填写下表:(1)当只有1个等边三角形时,图形的周长为3,每增加1个三角形,周长就增加1,因此填表如下:(3)因为函数y=n+2中,自变量n的取值范围是正整数集,因此在平面直角坐标系中可以描出无数个点,这些点组成了y=n+2的函数图象,如图4-4.某天7时,小明从家骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.图4-5反映了他骑车的整个过程,结合图象,回答下列问题:(1)自行车发生故障是在什么时间?此时离家有多远?(2)解从横坐标看出,小明修车花了15min;小明修好车后又花了10min到达学校.(3)解从纵坐标看出,小明家离学校2100m;从横坐标看出,他在路上共花了30min,因此,他从家到学校的平均速度是2100÷30=70(m/min).1.如图,将一个正方形的顶点分别标上号码1,2,3,4,直线l经过第2,4号顶点.作这个正方形关于直线l的轴对称图形,那么正方形的各个顶点分别变成哪个顶点?填在下表中:2.等腰三角形的底角的度数为x,顶角的度数为y,写出y随x而变化的函数表达式,并指出自变量x的取值范围.3.甲、乙两人在一次百米赛跑中,路程S(米)与赛跑时间t(秒)的关系如图所示,则下列说法正确的是()A.甲、乙两人的速度相同B.甲先到达终点C.乙用的时间短D.乙比甲跑的路程多函数的表示方法有三种:图象法、列表法、公式法,它们各有优、缺点;应该根据不同的问题、不同的要求选择恰当的方法表示它,以便研究函数某些性质.课后作业