如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
1(1)函数常用哪些方法来表示?(1)解析法:把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式。它的优点:①函数关系清楚;②容易从自变量的值求出其对应的函数值;③便于研究函数的性质。(2)列表法:列出表格来表示两个变量的函数关系。(3)图象法:用函数图象表示两个变量之间的关系。提问:初中画函数图象主要用什么方法?利用此法画图的主要步骤如何?例1:某种笔记本每个5元,买x(x∈{1,2,3,4})个笔记本的钱数记为y(元),试写出以x为自变量的函数y的解析式,并画出这个函数的图象。例2国内投寄信函(外埠),邮资按下列规则计算:1、信函质量不超过100g时,每20g付邮资80分,即信函质量不超过20g付邮资80分,信函质量超过20g,但不超过40g付邮资160分,依此类推;2、信函质量大于100g且不超过200g时,每100g付邮资200分,即信函质量超过100g,但不超过200g付邮资(A+200)分(A为质量等于100g的信函的邮资),信函质量超过200g,但不超过300g付邮资(A+400)分,依此类推。设一封信xg(0<x≤200)的信函应付的邮资为y(单位:分),试写出以x为自变量的函数y的解析式,并画出这个函数图象。解:这个函数的定义域为0<x≤200,函数解析式为注意:(2)解(1)(2)例321世纪游乐园要建造一个直径为20m的圆形喷水池,如图所示,计划在喷水池的周边靠近水面的位置安装一圈喷水头,使喷出的水柱在离池中心4m处达到最高,高度为6m。另外还要在喷水池的中心设计一个装饰物,使各方向喷来的水柱在此处汇合。这个装饰物的高度应当如何设计?解:过水池的中心任意选取一个截面,如图所示。由物理学知识可知,喷出的水柱轨迹是抛物线型。建立如图所示的直角坐标系,由已知条件易知,水柱上任意一个点距中心的水平距离x(m)与此点的高度y(m)之间的函数关系是于是,所求解析式是◆练习2本课小结结束