2021-2022学年高中数学 第二章 圆锥曲线与方程测评训练(含解析)北师大版选修1-1.docx
上传人:桂香****盟主 上传时间:2024-09-12 格式:DOCX 页数:9 大小:54KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

2021-2022学年高中数学 第二章 圆锥曲线与方程测评训练(含解析)北师大版选修1-1.docx

2021-2022学年高中数学第二章圆锥曲线与方程测评训练(含解析)北师大版选修1-1.docx

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第二章测评(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.下列曲线中离心率为62的是()A.x22-y24=1B.x24-y22=1C.x24-y26=1D.x24-y210=1解析:双曲线x24-y22=1的离心率e=4+22=62.答案:B2.平面上有两个定点A,B及动点P,命题甲:“|PA|-|PB|是定值”,命题乙:“点P的轨迹是以A,B为焦点的双曲线”,则甲是乙的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当|PA|-|PB|=|AB|时,点P的轨迹是一条射线,故甲乙,而乙⇒甲,故选B.答案:B3.已知椭圆与双曲线x23-y22=1有共同的焦点,且离心率为15,则椭圆的标准方程为()A.x220+y225=1B.x225+y220=1C.x225+y25=1D.x25+y225=1解析:双曲线x23-y22=1中,a12=3,b12=2,则c1=a12+b12=5,故焦点坐标为(-5,0),(5,0),故所求椭圆x2a2+y2b2=1(a>b>0)的c=5,又椭圆的离心率e=ca=15,则a=5,a2=25,b2=a2-c2=20,故椭圆的标准方程为x225+y220=1.答案:B4.已知双曲线C:x2a2-y2b2=1的焦距为10,点P(2,1)在双曲线C的渐近线上,则双曲线C的方程为()A.x220-y25=1B.x25-y220=1C.x280-y220=1D.x220-y280=1解析:根据双曲线标准方程中系数之间的关系求解.∵x2a2-y2b2=1的焦距为10,∴c=5=a2+b2.①又双曲线渐近线方程为y=±bax,且P(2,1)在渐近线上,∴2ba=1,即a=2b.②由①②解得a=25,b=5,故选A.答案:A5.(2017全国Ⅰ高考)已知F是双曲线C:x2-y23=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.13B.12C.23D.32解析:由c2=a2+b2=4,得c=2,所以点F的坐标为(2,0).将x=2代入x2-y23=1,得y=±3,所以|PF|=3.又点A的坐标是(1,3),故△APF的面积为12×3×(2-1)=32,故选D.答案:D6.已知双曲线x2a2-y2b2=1(a>0,b>0)的一条渐近线方程是y=3x,它的一个焦点在抛物线y2=24x的准线上,则双曲线的方程为()A.x236-y2108=1B.x29-y227=1C.x2108-y236=1D.x227-y29=1解析:抛物线y2=24x的准线方程为x=-6,故双曲线中c=6.①由双曲线x2a2-y2b2=1的一条渐近线方程为y=3x,知ba=3,②且c2=a2+b2.③由①②③解得a2=9,b2=27.故双曲线的方程为x29-y227=1,故选B.答案:B7.P是长轴在x轴上的椭圆x2a2+y2b2=1上的点,F1,F2分别为椭圆的两个焦点,椭圆的半焦距为c,则|PF1|·|PF2|的最大值与最小值之差一定是()A.1B.a2C.b2D.c2解析:由椭圆的几何性质得|PF1|∈[a-c,a+c],|PF1|+|PF2|=2a,所以|PF1|·|PF2|≤|PF1|+|PF2|22=a2,当且仅当|PF1|=|PF2|时取等号.|PF1|·|PF2|=|PF1|(2a-|PF1|)=-|PF1|2+2a|PF1|=-(|PF1|-a)2+a2≥-c2+a2=b2,所以|PF1|·|PF2|的最大值与最小值之差为a2-b2=c2.答案:D8.若直线y=kx-2与抛物线y2=8x交于A,B两个不同的点,且AB的中点的横坐标为2,则k等于()A.2或-1B.-1C.2D.1±5解析:由y=kx-2,y2=8x消去y,得k2x2-4(k+2)x+4=0,故Δ=[-4(k+2)]2-4k2×4=64(1+k)>0,解得k>-1,由x1+x2=4(k+2)k2=4,解得k=-1或k=2,又k>-1,故k=2.答案:C9.设双曲线x2a2-y2b2=1的一条渐近线与抛物线y=x2+1只有一个公共点,则双曲线的离心率为()A.54B.5C.52D.5解析:双曲线x2a2-y2b2=1的一条渐近线方程为y=bax,由方程组y=bax,y=x2+1消去y,得x2-bax+1=0有唯一解,所以Δ=ba2-4=0,所以ba=2,所以e=ca=a2+b2a=1+ba2=5,故选D.答案:D10.在抛物线y2=8x中,以(1,-1)为中点的弦的方程是()
立即下载