如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
基础知识自主学习基础知识自主学习名称3.重要结论画二元一次不等式表示的平面区域的直线定界,特殊点定域:(1)直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线.(2)特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证.1.利用“同号上,异号下”判断二元一次不等式表示的平面区域对于Ax+By+C>0或Ax+By+C<0,则有(1)当B(Ax+By+C)>0时,区域为直线Ax+By+C=0的上方;(2)当B(Ax+By+C)<0时,区域为直线Ax+By+C=0的下方.2.最优解和可行解的关系最优解必定是可行解,但可行解不一定是最优解.最优解不一定唯一,有时唯一,有时有多个.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)二元一次不等式组所表示的平面区域是各个不等式所表示的平面区域的交集.()(2)不等式Ax+By+C>0表示的平面区域一定在直线Ax+By+C=0的上方.()(3)点(x1,y1),(x2,y2)在直线Ax+By+C=0同侧的充要条件是(Ax1+By1+C)(Ax2+By2+C)>0,异侧的充要条件是(Ax1+By1+C)(Ax2+By2+C)<0.()(4)第二、四象限表示的平面区域可以用不等式xy<0表示.()(5)线性目标函数的最优解是唯一的.()(6)最优解指的是使目标函数取得最大值或最小值的可行解.()(7)目标函数z=ax+by(b≠0)中,z的几何意义是直线ax+by-z=0在y轴上的截距.()题组二教材改编11题组三易错自纠4.下列各点中,不在x+y-1≤0表示的平面区域内的是A.(0,0)B.(-1,1)C.(-1,3)D.(2,-3)1解析题型分类深度剖析命题点1不含参数的平面区域问题典例(2019·黄冈模拟)在平面直角坐标系中,已知平面区域A={(x,y)|x+y≤1,且x≥0,y≥0},则平面区域B={(x+y,x-y)|(x,y)∈A}的面积为解析对于集合B,令m=x+y,n=x-y,解析由图知,要使原不等式组表示的平面区域的形状为三角形,只需动直线l:x+y=a在l1,l2之间(包含l2,不包含l1)或l3上方(包含l3).故选D.(1)求平面区域的面积对平面区域进行分析,若为三角形应确定底与高,若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解,若为不规则四边形,可分割成几个三角形,分别求解再求和即可.(2)利用几何意义求解的平面区域问题,也应作出平面图形,利用数形结合的方法求解.跟踪训练(1)不等式(x-2y+1)(x+y-3)≤0在坐标平面内表示的区域(用阴影部分表示),应是下列图形中的解析由于x=1与x+y-4=0不可能垂直,所以只有可能x+y-4=0与kx-y=0垂直或x=1与kx-y=0垂直.①当x+y-4=0与kx-y=0垂直时,k=1,检验知三角形区域面积为1,即符合要求.②当x=1与kx-y=0垂直时,k=0,检验不符合要求.解析解析不等式组表示的可行域如图中阴影部分所示.解析x2+y2是可行域上动点(x,y)到原点(0,0)距离的平方,显然,当x=3,y=-1时,x2+y2取得最大值,最大值为10.故选C.解析解析作出可行域如图阴影部分所示.(1)先准确作出可行域,再借助目标函数的几何意义求目标函数的最值.(2)当目标函数是非线性的函数时,常利用目标函数的几何意义来解题,常见代数式的几何意义有解析解析解析根据已知条件,画出可行域,如图阴影部分所示.由z=ax+y,得y=-ax+z,直线的斜率k=-a.当0<k≤1,即-1≤a<0时,无选项满足此范围;当k>1,即a<-1时,由图形可知此时最优解为点(0,0),此时z=0,不合题意;当-1≤k<0,即0<a≤1时,无选项满足此范围;当k<-1,即a>1时,由图形可知此时最优解为点(2,0),此时z=2a+0=4,得a=2.解答解答目标函数为ω=2x+3y+300,作出可行域,如图阴影部分所示,解线性规划应用问题的一般步骤(1)审题:仔细阅读材料,抓住关键,准确理解题意,明确有哪些限制条件,借助表格或图形理清变量之间的关系.(2)设元:设问题中起关键作用(或关联较多)的量为未知量x,y,并列出相应的不等式组和目标函数.(3)作图:准确作出可行域,平移找点(最优解).(4)求解:代入目标函数求解(最大值或最小值).(5)检验:根据结果,检验反馈.跟踪训练(2019·全国Ⅰ)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3