高中数学-第一章-导数及其应用-1.3.1-单调性习题-苏教版选修2-2.doc
上传人:王子****青蛙 上传时间:2024-09-10 格式:DOC 页数:13 大小:1MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

高中数学-第一章-导数及其应用-1.3.1-单调性习题-苏教版选修2-2.doc

高中数学-第一章-导数及其应用-1.3.1-单调性习题-苏教版选修2-2.doc

预览

免费试读已结束,剩余 3 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

1.3.1单调性明目标、知重点1.结合实例,探索并掌握函数的单调性与导数的关系.2.能利用导数研究函数的单调性,并能够利用单调性证明一些简单的不等式.3.会求函数的单调区间(其中多项式函数一般不超过三次).导数与函数单调性的关系(1)在区间(a,b)内,由导数的正、负判断函数的单调性导数函数的单调性f′(x)>0单调递增f′(x)<0单调递减f′(x)=0常数函数(2)在区间(a,b)内,由函数的单调性判断导数的符号函数的单调性导数单调递增f′(x)≥0单调递减f′(x)≤0常数函数f′(x)=0[情境导学]以前,我们用定义来判断函数的单调性,在假设x1<x2的前提下,比较f(x1)与f(x2)的大小.但在函数y=f(x)比较复杂的情况下,比较f(x1)与f(x2)的大小并不容易.如果利用导数来判断函数的单调性就比较简单.本节我们就来研究这个问题.探究点一函数的单调性与导函数正负的关系思考1观察高台跳水运动员的高度h随时间t变化的函数h(t)=-4.9t2+6.5t+10的图象,及运动员的速度v随时间t变化的函数v(t)=h′(t)=-9.8t+6.5的图象,思考运动员从起跳到最高点,从最高点到入水的运动状态有什么区别.答(1)从起跳到最高点,h随t的增加而增加,即h(t)是增函数,h′(t)>0;(2)从最高点到入水,h随t的增加而减小,即h(t)是减函数,h′(t)<0.思考2观察下面四个函数的图象,回答函数的单调性与其导函数的正负有何关系?答(1)在区间(-∞,+∞)内,y′=1>0,y是增函数;(2)在区间(-∞,0)内,y′=2x<0,y是减函数;在区间(0,+∞)内,y′=2x>0,y是增函数;(3)在区间(-∞,+∞)内,y′=3x2≥0,y是增函数;(4)在区间(-∞,0),(0,+∞)内,y′=-eq\f(1,x2)<0,y是减函数.小结一般地,函数的单调性与其导函数的正负有如下关系:在某个区间(a,b)内,如果f′(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f′(x)<0,那么函数y=f(x)在这个区间内单调递减.思考3若函数f(x)在区间(a,b)内单调递增,那么f′(x)一定大于零吗?答不一定.由思考2中(3)知f′(x)≥0恒成立.思考4(1)如果一个函数具有相同单调性的单调区间不止一个,那么如何表示这些区间?试写出思考2中(4)的单调区间.(2)函数的单调区间与其定义域满足什么关系?答(1)不能用“∪”连结,只能用“,”或“和”字隔开.思考2中(4)的单调递减区间为(-∞,0),(0,+∞).(2)函数的单调性是对函数定义域内的某个子区间而言的,故单调区间是定义域的子集.例1已知导函数f′(x)的下列信息:当1<x<4时,f′(x)>0;当x>4,或x<1时,f′(x)<0;当x=4,或x=1时,f′(x)=0.试画出函数f(x)图象的大致形状.解当1<x<4时,f′(x)>0,可知f(x)在此区间内单调递增;当x>4,或x<1时,f′(x)<0,可知f(x)在这两个区间内单调递减;当x=4,或x=1时,f′(x)=0,这两点比较特殊,我们称它们为“临界点”.综上,函数f(x)图象的大致形状如图所示.反思与感悟本题具有一定的开放性,图象不唯一,只要能抓住问题的本质,即在相应区间上的单调性符合题意就可以了.跟踪训练1函数y=f(x)的图象如图所示,试画出导函数f′(x)图象的大致形状.解f′(x)图象的大致形状如下图:注:图象形状不唯一.例2求下列函数的单调区间:(1)f(x)=2x3+3x2-36x+1;(2)f(x)=sinx-x(0<x<π);(3)f(x)=3x2-2lnx;(4)f(x)=3tx-x3.解(1)f′(x)=6x2+6x-36.由f′(x)>0解得x<-3,或x>2,由f′(x)<0解得-3<x<2,故函数f(x)的单调递增区间是(-∞,-3),(2,+∞);单调递减区间是(-3,2).(2)f′(x)=cosx-1≤0恒成立,故函数f(x)的单调递减区间为(0,π),无单调递增区间.(3)函数的定义域为(0,+∞),f′(x)=6x-eq\f(2,x)=2·eq\f(3x2-1,x).令f′(x)>0,即2·eq\f(3x2-1,x)>0,解得-eq\f(\r(3),3)<x<0或x>eq\f(\r(3),3).又∵x>0,∴x>eq\f(\r(3),3).令f′(x)<0,即2·eq\f(3x2-1,x)<0,解得x<-eq\f(\r(3),3)或0<x<eq\
立即下载