如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
.实用文档.排列组合二项式定理1,分类计数原理完成一件事有几类方法,各类方法相互独立每类方法又有多种不同的方法〔每一种都可以独立的完成这个事情〕分步计数原理完成一件事,需要分几个步骤,每一步的完成有多种不同的方法2,排列排列定义:从n个不同元素中,任取m〔m≤n〕个元素〔被取出的元素各不相同〕,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。排列数定义;从n个不同元素中,任取m〔m≤n〕个元素的所有排列的个数公式=规定0!=13,组合组合定义从n个不同元素中,任取m〔m≤n〕个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合组合数从n个不同元素中,任取m〔m≤n〕个元素的所有组合个数=性质=排列组合题型总结直接法1.特殊元素法例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足以下条件的四位数各有多少个〔1〕数字1不排在个位和千位〔2〕数字1不在个位,数字6不在千位。分析:〔1〕个位和千位有5个数字可供选择,其余2位有四个可供选择,由乘法原理:=2402.特殊位置法〔2〕当1在千位时余下三位有=60,1不在千位时,千位有种选法,个位有种,余下的有,共有=192所以总共有192+60=252二间接法当直接法求解类别比拟大时,应采用间接法。如上例中〔2〕可用间接法=252Eg有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三位数?分析::任取三张卡片可以组成不同的三位数个,其中0在百位的有个,这是不合题意的。故共可组成不同的三位数-=432Eg三个女生和五个男生排成一排女生必须全排在一起有多少种排法〔捆绑法〕女生必须全分开〔插空法须排的元素必须相邻〕两端不能排女生两端不能全排女生如果三个女生占前排,五个男生站后排,有多少种不同的排法插空法当需排元素中有不能相邻的元素时,宜用插空法。例3在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法?分析:原有的8个节目中含有9个空档,插入一个节目后,空档变为10个,故有=100中插入方法。捆绑法当需排元素中有必须相邻的元素时,宜用捆绑法。1.四个不同的小球全部放入三个不同的盒子中,假设使每个盒子不空,那么不同的放法有种〔〕,2,某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校人数较多,要安排连续参观2天,其余只参观一天,那么植物园30天内不同的安排方法有〔〕〔注意连续参观2天,即需把30天种的连续两天捆绑看成一天作为一个整体来选有其余的就是19所学校选28天进行排列〕阁板法名额分配或相同物品的分配问题,适宜采阁板用法例5某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共种。分析:此例的实质是12个名额分配给8个班,每班至少一个名额,可在12个名额种的11个空当中插入7块闸板,一种插法对应一种名额的分配方式,故有种五平均分推问题eg6本不同的书按一下方式处理,各有几种分发?平均分成三堆,平均分给甲乙丙三人一堆一本,一堆两本,一对三本甲得一本,乙得两本,丙得三本〔一种分组对应一种方案〕一人的一本,一人的两本,一人的三本分析:1,分出三堆书〔a1,a2〕,(a3,a4),〔a5,a6〕由顺序不同可以有=6种,而这6种分法只算一种分堆方式,故6本不同的书平均分成三堆方式有=15种2,六本不同的书,平均分成三堆有x种,平均分给甲乙丙三人就有x种3,5,合并单元格解决染色问题Eg如图1,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有四种颜色可供选择,那么不同的着色方法共有种〔以数字作答〕。分析:颜色相同的区域可能是2、3、4、5.下面分情况讨论:(ⅰ)当2、4颜色相同且3、5颜色不同时,将2、4合并成一个单元格,此时不同的着色方法相当于4个元素①③⑤的全排列数〔ⅱ〕当2、4颜色不同且3、5颜色相同时,与情形(ⅰ)类似同理可得种着色法.〔ⅲ〕当2、4与3、5分别同色时,将2、4;3、5分别合并,这样仅有三个单元格①从4种颜色中选3种来着色这三个单元格,计有种方法.由加法原理知:不同着色方法共有2=48+24=72〔种〕练习1〔天津卷〔文〕〕将3种作物种植12345在如图的5块试验田里,每快种植一种作物且相邻的试验田不能种植同一作物,不同的种植方法共种〔以数字作答〕〔72〕2.某城市中心广场建造一个花圃,花圃6分为个局部〔如图3〕,现要栽种4种颜色的花,每局部栽种一种且相邻局部不能栽种同一样颜色的话,不