如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
矩阵的特征值和特征向量(完整版)实用资料(可以直接使用,可编辑完整版实用资料,欢迎下载)第五章矩阵的特征值和特征向量1.教学目的和要求:(1)理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.(2)了解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.(3)了解实对称矩阵的特征值和特征向量的性质.2.教学重点:(1)会求矩阵的特征值与特征向量.(2)会将矩阵化为相似对角矩阵.3.教学难点:将矩阵化为相似对角矩阵.4.教学内容:本章将介绍矩阵的特征值、特征向量及相似矩阵等概念,在此基础上讨论矩阵的对角化问题.§1矩阵的特征值和特征向量定义1设是一个阶方阵,是一个数,如果方程(1)存在非零解向量,则称为的一个特征值,相应的非零解向量称为属于特征值的特征向量.(1)式也可写成,(2)这是个未知数个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式,(3)即上式是以为未知数的一元次方程,称为方阵的特征方程.其左端是的次多项式,记作,称为方阵的特征多项式.===显然,的特征值就是特征方程的解.特征方程在复数范围内恒有解,其个数为方程的次数(重根按重数计算),因此,阶矩阵有个特征值.设阶矩阵的特征值为由多项式的根与系数之间的关系,不难证明(ⅰ)(ⅱ)若为的一个特征值,则一定是方程的根,因此又称特征根,若为方程的重根,则称为的重特征根.方程的每一个非零解向量都是相应于的特征向量,于是我们可以得到求矩阵的全部特征值和特征向量的方法如下:第一步:计算的特征多项式;第二步:求出特征方程的全部根,即为的全部特征值;第三步:对于的每一个特征值,求出齐次线性方程组:的一个基础解系,则的属于特征值的全部特征向量是(其中是不全为零的任意实数).例1求的特征值和特征向量.解的特征多项式为=所以的特征值为当=2时,解齐次线性方程组得解得令=1,则其基础解系为:=因此,属于=2的全部特征向量为:.当=4时,解齐次线性方程组得令=1,则其基础解系为:因此的属于=4的全部特征向量为[注]:若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定.反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值.例2求矩阵的特征值和特征向量.解的特征多项式为==,所以的特征值为==2(二重根),.对于==2,解齐次线性方程组.由,得基础解系为:因此,属于==2的全部特征向量为:不同时为零.对于,解齐次线性方程组.由,得基础解系为:因此,属于的全部特征向量为:由以上讨论可知,对于方阵的每一个特征值,我们都可以求出其全部的特征向量.但对于属于不同特征值的特征向量,它们之间存在什么关系呢?这一问题的讨论在对角化理论中有很重要的作用.对此我们给出以下结论:定理1属于不同特征值的特征向量一定线性无关.证明设是矩阵的不同特征值,而分别是属于的特征向量,要证是线性无关的.我们对特征值的个数作数学归纳法证明.当时,由于特征向量不为零,所以结论显然成立.当>1时,假设时结论成立.由于是的不同特征值,而是属于的特征向量,因此如果存在一组实数使(3)则上式两边乘以得(4)另一方面,,即(5)(4)-(5)有由归纳假设,线性无关,因此而互不相同,所以.于是(3)式变为.因,于是.可见线性无关.课后作业:习题五5-12§2相似矩阵定义2设、都是阶方阵,若存在满秩矩阵,使得则称与相似,记作,且满秩矩阵称为将变为的相似变换矩阵.“相似”是矩阵间的一种关系,这种关系具有如下性质:⑴反身性:~;⑵对称性:若~,则~;⑶传递性:若~,~,则~.相似矩阵还具有下列性质:定理2相似矩阵有相同的特征多项式,因而有相同的特征值.证明设~,则存在满秩矩阵,使于是推论若阶矩阵与对角矩阵相似,则即是的个特征值.定理3设是矩阵的属于特征值的特征向量,且~,即存在满秩矩阵使,则是矩阵的属于的特征向量.证明因是矩阵的属于特征值的特征向量,则有于是所以是矩阵的属于的特征向量.下面我们要讨论的主要问题是:对阶矩阵,寻求相似变换矩阵,使为对角矩阵,这就称为把方阵对角化.定理4阶矩阵与对角矩阵相似的充分必要条件是:矩阵有个线性无关的分别属于特征值的特征向量(中可以有相同的值).证明必要性设与对角矩阵相似,则存在满秩矩阵,使=设则由上式得即,因此所以是的特征值,是的属于的特征向量,又因是满秩的,故线性无关.充分性如果有个线性无关的分别属于特征值的特征向量,则有设则是满秩的,于是,即=[注