一元二次方程知识点总结与易错题及答案优秀名师资料.doc
上传人:天马****23 上传时间:2024-09-09 格式:DOC 页数:52 大小:3.3MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

一元二次方程知识点总结与易错题及答案优秀名师资料.doc

一元二次方程知识点总结与易错题及答案优秀名师资料.doc

预览

免费试读已结束,剩余 42 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一元二次方程知识点总结与易错题及答案优秀名师资料(完整版)资料(可以直接使用,可编辑优秀版资料,欢迎下载)一元二次方程知识点总结与易错题及答案一元二次方程知识点总结考点一、一元二次方程1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。22、一元二次方程的一般形式:,它的特征是:等式左边十一个关于未知数x的二次ax,bx,c,0(a,0)2多项式,等式右边是零,其中叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫ax做常数项。考点二、一元二次方程的解法1、直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如2b,0x,a,,b的一元二次方程。根据平方根的定义可知,是b的平方根,当时,,(x,a),bx,ax,,a,b,当b<0时,方程没有实数根。2、配方法:222配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则a,2ab,b,(a,b)222有。x,2bx,b,(x,b)配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。2一元二次方程的求根公式:ax,bx,c,0(a,0)2,b,b,4ac2x,(b,4ac,0)2a公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c。4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式5、韦达定理bc利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和等于-,二根之积等于,也可以表示aabc为x+x=-,xx=。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用。2211aa考点三、一元二次方程根的判别式根的判别式:222一元二次方程中,叫做一元二次方程的根的判别b,4acax,bx,c,0(a,0)ax,bx,c,0(a,0)2式,通常用“,”来表示,即,,b,4acI当?>0时,一元二次方程有2个不相等的实数根;II当?=0时,一元二次方程有2个相同的实数根;III当?<0时,一元二次方程没有实数根。考点四、一元二次方程根与系数的关系bc2x,x,,xx,如果方程的两个实数根是,那么,。也就是说,对x,xax,bx,c,0(a,0)121212aa于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。考点五、一元二次方程的二次函数的关系大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。也就是该方程的解了一元二次方程易错题一、选择题221、若关于x的一元二次方程(m-1)x+5x+m-3m+2=0有一个根为0,则m的值等于(B)A(1B.2C.1或2D.02、巴中日报讯:今年我市小春粮油再获丰收,全市产量预计由前年的45万吨提升到50万吨,设从前年到,则可列方程为(B)今年我市的粮油产量年平均增长率为x2245250,,xA(B(C(D(45(12)50,,x45(1)50,,x50(1)45,,xba2ab,3,、已知是关于的一元二次方程的两实数根,则的值是(D)xnx,,,10xab2222A(B(C(D(n,2,,n2n,2,,n24、已知a、b、c分别是三角形的三边,则(a+b)x2+2cx+(a+b),0的根的情况是(A)A(没有实数根B(可能有且只有一个实数根C(有两个相等的实数根D(有两个不相等的实数根2225、已知是方程x,2x,1,0的两根,且,则的值等于(C)a(7m,14m,a)(3n,6n,7),8m,nA(,5B.5C.-9D.926、已知方程xbxa,,,0有一个根是,则下列代数式的值恒为常数的是(D),,aa(0)aabab,ab,A(B(C(D(b27、的估计正确的是(B)x,2x,2,0的一较小根为x,下面对x11A(B(C(D(,1,x,00,x,11,x,2,2,x,