二项式定理高考总复习.doc
上传人:sy****28 上传时间:2024-09-15 格式:DOC 页数:13 大小:402KB 金币:15 举报 版权申诉
预览加载中,请您耐心等待几秒...

二项式定理高考总复习.doc

二项式定理高考总复习.doc

预览

免费试读已结束,剩余 3 页请下载文档后查看

15 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

二项式定理1.二项式定理:,2.基本概念:①二项式展开式:右边的多项式叫做的二项展开式。②二项式系数:展开式中各项的系数.③项数:共项,是关于与的齐次多项式④通项:展开式中的第项叫做二项式展开式的通项。用表示。3.注意关键点:①项数:展开式中总共有项。②顺序:注意正确选择,,其顺序不能更改。与是不同的。③指数:的指数从逐项减到,是降幂排列。的指数从逐项减到,是升幂排列。各项的次数和等于.④系数:注意正确区分二项式系数与项的系数,二项式系数依次是项的系数是与的系数(包括二项式系数)。4.常用的结论:令令5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即,···②二项式系数和:令,则二项式系数的和为,变形式。③奇数项的二项式系数和=偶数项的二项式系数和:在二项式定理中,令,则,从而得到:④奇数项的系数和与偶数项的系数和:⑤二项式系数的最大项:如果二项式的幂指数是偶数时,则中间一项的二项式系数取得最大值。如果二项式的幂指数是奇数时,则中间两项的二项式系数,同时取得最大值。⑥系数的最大项:求展开式中最大的项,一般采用待定系数法。设展开式中各项系数分别为,设第项系数最大,应有,从而解出来。题型一:求二项展开式1.“”型的展开式例1.求的展开式;解:原式=====小结:这类题目一般为容易题目,高考一般不会考到,但是题目解决过程中的这种“先化简在展开”的思想在高考题目中会有体现的。2.“”型的展开式例2.求的展开式;分析:解决此题,只需要把改写成的形式然后按照二项展开式的格式展开即可。本题主要考察了学生的“问题转化”能力。3.二项式展开式的“逆用”例3.计算;解:原式=小结:公式的变形应用,正逆应用,有利于深刻理解数学公式,把握公式本质。题型二:求二项展开式的特定项求指定幂的系数或二项式系数(1)求单一二项式指定幂的系数例4.(03全国)展开式中的系数是;解:==令则,从而可以得到的系数为:,填求两个二项式乘积的展开式指定幂的系数例5.(02全国)的展开式中,项的系数是;解:在展开式中,的来源有:第一个因式中取出,则第二个因式必出,其系数为;第一个因式中取出1,则第二个因式中必出,其系数为的系数应为:填。求可化为二项式的三项展开式中指定幂的系数例6.(04安徽改编)的展开式中,常数项是;解:上述式子展开后常数项只有一项,即本小题主要考查把“三项式”的问题通过转化变型后,用二项式定理的知识解决,考查了变型与转化的数学思想。求中间项例7.(00京改编)求(的展开式的中间项;解:展开式的中间项为即:。当为奇数时,的展开式的中间项是和;当为偶数时,的展开式的中间项是。求有理项例8.(00京改编)求的展开式中有理项共有项;解:当时,所对应的项是有理项。故展开式中有理项有4项。当一个代数式各个字母的指数都是整数时,那么这个代数式是有理式;当一个代数式中各个字母的指数不都是整数(或说是不可约分数)时,那么这个代数式是无理式。求系数最大或最小项特殊的系数最大或最小问题例9.(00上海)在二项式的展开式中,系数最小的项的系数是;解:要使项的系数最小,则必为奇数,且使为最大,由此得,从而可知最小项的系数为一般的系数最大或最小问题例10.求展开式中系数最大的项;解:记第项系数为,设第项系数最大,则有又,那么有即解得,系数最大的项为第3项和第4项。系数绝对值最大的项例11.在(的展开式中,系数绝对值最大项是;解:求系数绝对最大问题都可以将“”型转化为型来处理,故此答案为第4项,和第5项。题型三:利用“赋值法”及二项式性质3求部分项系数,二项式系数和例12.(99全国)若,则的值为;解:令,有,令,有故原式===例13.(04天津)若,则;解:,令,有令,有故原式==在用“赋值法”求值时,要找准待求代数式与已知条件的联系,一般而言:特殊值在解题过程中考虑的比较多。例14.设,则;分析:解题过程分两步走;第一步确定所给绝对值符号内的数的符号;第二步是用赋值法求的化简后的代数式的值。解:==0题型四:利用二项式定理求近似值例15.求的近似值,使误差小于;分析:因为=,故可以用二项式定理展开计算。解:==,且第3项以后的绝对值都小于,从第3项起,以后的项都可以忽略不计。==小结:由,当的绝对值与1相比很小且很大时,等项的绝对值都很小,因此在精确度允许的范围内可以忽略不计,因此可以用近似计算公式:,在使用这个公式时,要注意按问题对精确度的要求,来确定对展开式中各项的取舍,若精确度要求较高,则可以使用