2013届高考理科数学第一轮总复习课件66.ppt
上传人:sy****28 上传时间:2024-09-15 格式:PPT 页数:29 大小:1.2MB 金币:16 举报 版权申诉
预览加载中,请您耐心等待几秒...

2013届高考理科数学第一轮总复习课件66.ppt

2013届高考理科数学第一轮总复习课件66.ppt

预览

免费试读已结束,剩余 19 页请下载文档后查看

16 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第八章圆锥曲线方程考点搜索高考猜想1.平面内与两个定点F1、F2的.等于常数(大于)的点的轨迹叫做椭圆.这两个定点F1、F2叫做椭圆的.2.椭圆也可看成是平面内到一个定点F的距离与到一条定直线l(点F在直线l外)的距离的点的轨迹,其中这个常数就是椭圆的;其取值范围是;这个定点F是椭圆的一个;这条定直线l是椭圆的一条.3.设椭圆的半长轴长为a,半短轴长为b,半焦距为c,则a、b、c三者的关系是;焦点在x轴上的椭圆的标准方程是;焦点在y轴上的椭圆的标准方程是.www.3edu.net4.对于椭圆:(1)x的取值范围是;y的取值范围是.(2)椭圆既关于成轴对称图形,又关于成中心对称图形.(3)椭圆的四个顶点坐标是;两个焦点坐标是;两条准线方程是.(4)椭圆的离心率e=;一个焦点到相应准线的距离(焦准距)是.(5)设P(x0,y0)为椭圆上一点,F1、F2分别为椭圆的左、右焦点,则|PF1|=;|PF2|=.(6)对于点P(x0,y0),若点P在椭圆内,则;若点P在椭圆外则.(7)椭圆的参数方程是.1.过椭圆的左焦点F1作x轴的垂线交椭圆于点P,F2为右焦点,若∠F1PF2=60°,则椭圆的离心率为()A.B.C.D.2.已知椭圆C:的右焦点为F,右准线为l,点A∈l,线段AF交C于点B,若,则|AF|=()A.B.2C.D.33.已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为,且G上一点到G的两个焦点的距离之和为12,则椭圆G的方程为.题型一求椭圆的标准方程解:(1)设椭圆长轴为2a,短轴为2b,焦距为2c,则,解得所以所求椭圆的方程为或.(2)设椭圆的方程为,则其准线方程为x=±12.所以,解得.所以所求椭圆的方程为.(3)因为2a=|PF1|+|PF2|=,所以a=5.由,得.所以所求椭圆的方程为或.16171819题型二求椭圆离心率的值或取值范围又|PF1|+|PF2|=2a,故|PF1|和|PF2|的等差中项为a,所以,即.又-a≤x≤a,所以-a≤-a≤a,即-1≤-1≤1,所以≤e<1.同理可得,当椭圆的焦点在y轴上时,e∈[,1).故椭圆的离心率e的取值范围是[,1).点评:椭圆的离心率.已知一个条件求离心率的值或取值范围,其策略一般是先把这个条件转化为关于a,c的式子,再转化为的式子,最后通过解方程或不等式求得离心率的值或取值范围.值得注意的是隐含条件e∈(0,1).www.aaaxk.com过椭圆的右焦点F作斜率为1的直线l,交椭圆于A、B两点,M为线段AB的中点,射线OM交椭圆于点C.若OA+OB=OC(O为原点),求椭圆的离心率.因为OC=OA+OB=(x1+x2,y1+y2),所以点因为点C在椭圆上,所以可得即4c2=a2+b2.因为b2=a2-c2,所以4c2=a2+(a2-c2),可得2a2=5c2,所以,所以.故椭圆的离心率为.1.椭圆的标准方程有两种形式,尤其在解题时要防止遗漏.确定椭圆的标准方程需要三个条件,要确定焦点在哪个坐标轴上(即定位),还要确定a、b之值(即定量).若定位条件不足,应分类讨论.当椭圆的焦点在哪一个坐标轴上不明确而无法确定标准方程的形式时,可设方程为Ax2+By2=1(A>0,B>0),这样可避免讨论和繁杂的计算.2.求椭圆的方程的方法除了直接根据定义外,常用待定系数法(先定性、后定型、再定参).3.椭圆的离心率能反映椭圆的扁平程度.因为a>c>0,所以0<e<1,且.当e越接近1时椭圆越“扁”;当e越接近0时椭圆越“圆”.www.3edu.net