如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
矩阵的对角化及其应用(完整版)实用资料(可以直接使用,可编辑完整版实用资料,欢迎下载)学院2021届本科毕业论文(设计)矩阵的对角化及其应用学生姓名:学号:专业:数学与应用数学指导老师:AGraduationThesis(Project)SubmittedtoSchoolofScience,HubeiUniversityforNationalitiesInPartialFulfillmentoftheRequiringforBSDegreeIntheYearof2021DiagonalizationoftheMatrixanditsApplicationsStudentNameStudentNo.:Specialty:Supervisor:DateofThesisDefense:DateofBookbinding:摘要矩阵在大学数学中是一个重要工具,在很多方面应用矩阵能简化描述性语言,而且也更容易理解,比如说线性方程组、二次方程等.矩阵相似是一个等价关系,利用相似可以把矩阵进行分类,其中与对角矩阵相似的一类矩阵尤为重要,这类矩阵有很好的性质,方便我们解决其它的问题.本文从矩阵的对角化的诸多充要条件及充分条件着手,探讨数域上任意一个n阶矩阵的对角化问题,给出判定方法,研究判定方法间的相互关系,以及某些特殊矩阵的对角化,还给出如幂等矩阵、对合矩阵、幂幺矩阵对角化的应用.关键词:对角矩阵,实对称矩阵,幂等矩阵,对合矩阵,特征值,特征向量,最小多项式IAbstractThematrixisanimportanttoolincollegemathematics,andcansimplifythedescriptionlanguagebasedontheapplicationofmatrixinmanyways.Soitiseasiertounderstandinmanyfields,forexample,linearequations,quadraticequations.Inmanycharacteristics,thematrixsimilarityisanveryimportantaspect.Weknowthatthematrixsimilarityisanequivalencerelationbywhichwecanclassifymatrix,thediagonalmatrixisveryimportant.Thiskindofmatrixhasgoodproperties,anditisconvenientforustosolveotherproblems,suchastheapplicationofsimilarmatrixinlinearspace.Inthispaper,wefirstdiscussmanynecessaryandsufficientconditionsofdiagonalizationofmatrixandthengivesomeapplicationsofspecialmatrixdiagonalization.Keywords:diagonalmatrix,realsymmetricmatrix,idempotentmatrix,involutorymatrix,theeigenvaule,thefeaturevector,minimalpolynomialII目录摘要„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„IAbstract„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„II绪言„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„1课题背景„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„1目的和意义„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„1国内外概况„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„1预备知识„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„2相关概念„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„2矩阵的对角化„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„4特殊矩阵的对角化„„„„„„„„„„„„„„„„„„„„„„„„„„„14矩阵对角化的应用„„„„„„„„„„„„„„„„„„„„„„„„„„„22总结„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„24致谢„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„25参考文献„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„26独创声明„„„„„„„„„„„„„„„„„„