如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
第六章参数估计一般常用表示参数,参数所有可能取值组成的集合称为参数空间,常用表示。参数估计问题就是根据样本对上述各种未知参数作出估计。参数估计的形式有两种:点估计与区间估计。设x1,x2,…,xn是来自总体X的一个样本,我们用一个统计量的取值作为的估计值,称为的点估计(量),简称估计。在这里如何构造统计量并没有明确的规定,只要它满足一定的合理性即可。这就涉及到两个问题:§6.1点估计的几种方法例6.1.1对某型号的20辆汽车记录其每加仑汽油的行驶里程(km),观测数据如下:29.827.628.327.930.128.729.928.027.928.728.427.229.528.528.030.029.129.829.626.9经计算有由此给出总体均值、方差和中位数的估计分别为:28.695,0.9185和28.6。矩法估计的实质是用经验分布函数去替换总体分布,其理论基础是格里纹科定理。二、概率函数P(x,θ)已知时未知参数的矩法估计例6.1.2设总体服从指数分布,由于EX=1/,即=1/EX,故的矩法估计为另外,由于Var(X)=1/2,其反函数为因此,从替换原理来看,的矩法估计也可取为s为样本标准差。这说明矩估计可能是不唯一的,这是矩法估计的一个缺点,此时通常应该尽量采用低阶矩给出未知参数的估计。例6.1.3x1,x2,…,xn是来自(a,b)上的均匀分布U(a,b)的样本,a与b均是未知参数,这里k=2,由于不难推出由此即可得到a,b的矩估计:6.1.2极(最)大似然估计如果某统计量满足则称是的极(最)大似然估计,简记为MLE(MaximumLikelihoodEstimate)。例6.1.6设一个试验有三种可能结果,其发生概率分别为现做了n次试验,观测到三种结果发生的次数分别为n1,n2,n3(n1+n2+n3=n),则似然函数为其对数似然函数为将之关于求导,并令其为0得到似然方程解之,得由于所以是极大值点。例6.1.7对正态总体N(,2),θ=(,2)是二维参数,设有样本x1,x2,…,xn,则似然函数及其对数分别为将lnL(,2)分别关于两个分量求偏导并令其为0,即得到似然方程组(6.1.9)(6.1.10)解此方程组,由(6.1.9)可得的极大似然估计为将之代入(6.1.10),得出2的极大似然估计利用二阶导函数矩阵的非正定性可以说明上述估计使得似然函数取极大值。虽然求导函数是求极大似然估计最常用的方法,但并不是在所有场合求导都是有效的。解似然函数要使L()达到最大,首先一点是示性函数取值应该为1,其次是1/n尽可能大。由于1/n是的单调减函数,所以的取值应尽可能小,但示性函数为1决定了不能小于x(n),由此给出的极大似然估计:。极大似然估计有一个简单而有用的性质:如果是的极大似然估计,则对任一函数g(),其极大似然估计为。该性质称为极大似然估计的不变性,从而使一些复杂结构的参数的极大似然估计的获得变得容易了。例6.1.9设x1,x2,…,xn是来自正态总体N(,2)的样本,则和2的极大似然估计为,于是由不变性可得如下参数的极大似然估计,它们是:概率的MLE是;§6.2点估计的评价标准定义6.2.1设∈Θ为未知参数,是的一个估计量,n是样本容量,若对任何一个ε>0,有(6.2.1)则称为参数的相合估计。相合性被认为是对估计的一个最基本要求,如果一个估计量,在样本量不断增大时,它都不能把被估参数估计到任意指定的精度,那么这个估计是很值得怀疑的。通常,不满足相合性要求的估计一般不予考虑。证明估计的相合性一般可应用大数定律或直接由定义来证.若把依赖于样本量n的估计量看作一个随机变量序列,相合性就是依概率收敛于,所以证明估计的相合性可应用依概率收敛的性质及各种大数定律。在判断估计的相合性时下述两个定理是很有用的。定理6.2.1设是的一个估计量,若则是的相合估计,例6.2.2设x1,x2,…,xn是来自均匀总体U(0,)的样本,证明的极大似然估计是相合估计。证明:在例6.1.7中我们已经给出的极大似然估计是x(n)。由次序统计量的分布,我们知道x(n)的分布密度函数为p(y)=nyn-1/n,y<,故有由定理6.2.1可知,x(n)是的相合估计。由大数定律及定理6.2.2,我们可以看到:矩估计一般都具有相合性。比如:6.2.2无偏性例6.2.4对任一总体而言,样本均值是总体均值的无偏估计。当总体k阶矩存在时,样本k阶原点矩ak是总体k阶原点矩k的无偏估计。但对中心矩则不一样,譬如,由于,样本方差s*2