2023-2024学年北京市顺义区高二下学期期中考试数学质量检测模拟试题.pdf
上传人:文库****品店 上传时间:2024-09-11 格式:PDF 页数:13 大小:1.1MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

2023-2024学年北京市顺义区高二下学期期中考试数学质量检测模拟试题.pdf

2023-2024学年北京市顺义区高二下学期期中考试数学质量检测模拟试题.pdf

预览

免费试读已结束,剩余 3 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2023-2024学年北京市顺义区高二下册期中考试数学试题一、单选题1.8,2的等差中项是()A.±5B.±4C.5D.4【正确答案】C【分析】利用等差中项的定义直接求解.82【详解】8,2的等差中项为5.2故选:C2.已知fxxex,则f0的值为()A.1B.2C.eD.1e【正确答案】B【分析】根据导数计算公式与法则即可得结果.【详解】由fxxex,则fx1ex,所以f01e02,故选:B.3.已知数列a中,a112n,S是数列a的前n项和,则S最大值时n的值为()nnnnnA.4B.5C.6D.7【正确答案】B【分析】首先表示出S,再根据二次函数的性质计算可得;n9112nn【详解】解:因为a112n,所以Sn210nn5225nn2所以当n5时S取最大值,且S25;nnmax故选:B4.下列求导运算正确的是()1A.B.sinxcosxlnxx1C.axxax1D.x2x【正确答案】D【分析】利用常见函数的导数对选项分别求导即可.【详解】对于A选项,sinxcosx,A选项错误;11对于B选项,,B选项错误;xx2对于C选项,axaxlna,C选项错误;1对于D选项,x,D选项正确.2x故选:D5.设等比数列{an}的前n项和是Sn,a=﹣2,a=﹣16,则S=()256A.﹣63B.63C.﹣31D.31【正确答案】A由已知结合等比数列的通项公式可求出公比和首项,结合等比数列的求和公式即可求出S.6qa【详解】解:设公比为,则aaq3,即162q3,解得q=2,所以a21,521qa1q6126所以S163,61q12故选:A.x6.曲线y在点2,2处的切线与坐标轴围成的三角形的面积为()x1A.20B.16C.12D.8【正确答案】D【分析】利用导数求出所求切线的方程,进而可求得切线与两坐标轴的交点坐标,利用三角形的面积公式即可得解.x1【详解】令fx,则fx,f21,x1x12x所以,曲线y在点2,2处的切线方程为xy40,x1y1与x轴的交点为4,0,与轴的交点为0,4,故所求三角形的面积为428.2故选:D.本题考查切线与坐标轴围成的三角形面积计算,解答的关键就是求出切线的方程,考查计算能力,属于基础题.7.在等差数列a中,若a,a是方程x23x20的两根,则a的前12项的和为()n67nA.12B.18C.-18D.-12【正确答案】C【分析】根据一元二次方程根与系数的关系可得aa3,由等差数列性质及前n项和公式计67算即可得出结果.【详解】由a,a是方程x23x20的两根,利用韦达定理可得aa3;676712则a的前12项的和Saaaaaa;n121211122112由等差数列性质可得aaaa,即S6aa6aa18;112671211267故选:C8.《张邱建算经》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女不善织,日减功迟,初日织五尺,末日织一尺,今三十织迄……”其大意为:有一女子不善于织布,每天比前一天少织同样多的布,第一天织5尺,最后一天织一尺,三十天织完…….则该女子第11天织布()11105657A.尺B.尺C.尺D.尺329293【正确答案】B女子每天的织布数成等差数列,根据首项和末项以及项数可求公差,从而可得第11天的织布数.【详解】设女子每天的织布数构成的数列为a,由题设可知a为等差数列,nn154且a5,a1,故公差d,13030129440105故aa1115,111292929故选:B.9.若函数f(x)2xasinx在(,)上单调递增,则实数a的取值范围是()A.[2,2]B.(2,)C.[2,)D.(1,1)【正确答案】A【分析】由导数判断单调性求解2a0【详解】f(x)2acosx,由题意f(x)0恒成立,故2a0解得2a2故选
立即下载