如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
喷泉复习回顾:我们知道,椭圆、双曲线的有共同的几何特征:如图,点是定点,是不经过点的定直线。是上任意一点,过点作,线段FH的垂直平分线m交MH于点M,拖动点H,观察点M的轨迹,你能发现点M满足的几何条件吗?问题探究:当e=1时,即|MF|=|MH|,点M的轨迹是什么?M解法一:以为轴,过点垂直于的直线为轴建立直角坐标系(如下图所示),则定点设动点点,由抛物线定义得:l三、标准方程P66思考:y例1课堂练习:例2:一种卫星接收天线的轴截面如下图所示。卫星波束呈近似平行状态射入轴截面为抛物线的接收天线,经反射聚集到焦点处。已知接收天线的径口(直径)为4.8m,深度为0.5m。建立适当的坐标系,求抛物线的标准方程和焦点坐标。解:如上图,在接收天线的轴截面所在平面内建立直角坐标系,使接收天线的顶点(即抛物线的顶点)与原点重合。4.标准方程中p前面的正负号决定抛物线的开口方向.(2000.全国)过抛物线的焦点作一条直线交抛物线于,两点,若线段与的长分别为,则等于()xx返回