自动控制原理实验四 线性系统的频域分析.doc
上传人:qw****27 上传时间:2024-09-12 格式:DOC 页数:5 大小:107KB 金币:15 举报 版权申诉
预览加载中,请您耐心等待几秒...

自动控制原理实验四 线性系统的频域分析.doc

自动控制原理实验四线性系统的频域分析.doc

预览

在线预览结束,喜欢就下载吧,查找使用更方便

15 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

实验四线性系统的频域分析一、实验目的1.掌握用MATLAB语句绘制各种频域曲线。2.掌握控制系统的频域分析方法。二、基础知识及MATLAB函数频域分析法是应用频域特性研究控制系统的一种经典方法。它是通过研究系统对正弦信号下的稳态和动态响应特性来分析系统的。采用这种方法可直观的表达出系统的频率特性,分析方法比较简单,物理概念明确。1.频率曲线主要包括:Nyquist图、Bode图。1)Nyquist图的绘制与分析MATLAB中绘制系统Nyquist图的函数调用格式为:nyquist(num,den)频率响应w的范围由软件自动设定nyquist(num,den,w)频率响应w的范围由人工设定[Re,Im]=nyquist(num,den)返回奈氏曲线的实部和虚部向量,不作图例4-1:已知系统的开环传递函数为,试绘制Nyquist图,并判断系统的稳定性。num=[26];den=[1252];[z,p,k]=tf2zp(num,den);pnyquist(num,den)注意:[Z,P,K]=TF2ZP(NUM,DEN):求出零点、极点和增益!极点的显示结果及绘制的Nyquist图如图4-1所示。由于系统的开环右根数P=0,系统的Nyquist曲线没有逆时针包围(-1,j0)点,所以闭环系统稳定。图4-1开环极点的显示结果及Nyquist图p=-0.7666+1.9227i-0.7666-1.9227i-0.4668若上例要求绘制间的Nyquist图,则对应的MATLAB语句为:num=[26];den=[1252];w=logspace(-1,1,100);即在10-1和101之间,产生100个等距离的点nyquist(num,den,w)2)Bode图的绘制与分析系统的Bode图又称为系统频率特性的对数坐标图。Bode图有两张图,分别绘制开环频率特性的幅值和相位与角频率的关系曲线,称为对数幅频特性曲线和对数相频特性曲线。MATLAB中绘制系统Bode图的函数调用格式为:bode(num,den)频率响应w的范围由软件自动设定bode(num,den,w)频率响应w的范围由人工设定[mag,phase,w]=bode(num,den,w)指定幅值范围和相角范围的伯德图例4-2:已知开环传递函数为,试绘制系统的伯德图。num=[001530];den=[1161000];w=logspace(-2,3,100);bode(num,den,w)grid绘制的Bode图如图4-2(a)所示,其频率范围由人工选定,而伯德图的幅值范围和相角范围是自动确定的。当需要指定幅值范围和相角范围时,则需用下面的功能指令:[mag,phase,w]=bode(num,den,w)图4-2(a)幅值和相角范围自动确定的Bode图图4-2(b)指定幅值和相角范围的Bode图mag,phase是指系统频率响应的幅值和相角,由所选频率点的w值计算得出。其中,幅值的单位为dB,它的算式为magdB=20lg10(mag)。指定幅值范围和相角范围的MATLAB调用语句如下,图形如图4-2(b)所示。num=[001530];den=[1161000];w=logspace(-2,3,100);[mag,phase,w]=bode(num,den,w);%指定Bode图的幅值范围和相角范围subplot(2,1,1);%将图形窗口分为2*1个子图,在第1个子图处绘制图形semilogx(w,20*log10(mag));%使用半对数刻度绘图,X轴为log10刻度,Y轴为线性刻度gridonxlabel(‘w/s^-1’);ylabel(‘L(w)/dB’);title(‘BodeDiagramofG(s)=30(1+0.5s)/[s(s^2+16s+100)]’);subplot(2,1,2);%将图形窗口分为2*1个子图,在第2个子图处绘制图形semilogx(w,phase);gridonxlabel(‘w/s^-1’);ylabel(‘(0)’);注意:半Bode图的绘制可用semilogx函数实现,其调用格式为semilogx(w,L),其中L=20*log10(abs(mag))。2.幅值裕量和相位裕量幅值裕量和相位裕量是衡量控制系统相对稳定性的重要指标,需要经过复杂的运算求取。应用MATLAB功能指令可以方便地求解幅值裕量和相位裕量。其MATLAB调用格式为:[Gm,Pm,Wcg,Wcp]=margin(num,den)其中,Gm,Pm分别为系统的幅值裕量和相位裕量,而Wcg,Wcp分别为