三角形五心及其性质.doc
上传人:天马****23 上传时间:2024-09-15 格式:DOC 页数:10 大小:53KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

三角形五心及其性质.doc

三角形五心及其性质.doc

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

..精选精选.精选三角形的三条高的交点叫做三角形的垂心。三角形垂心的性质设△ABC的三条高为AD、BE、CF,其中D、E、F为垂足,垂心为H,角A、B、C的对边分别为a、b、c,p=(a+b+c)/2.1、锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外.2、三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心;3、垂心H关于三边的对称点,均在△ABC的外接圆上。4、△ABC中,有六组四点共圆,有三组(每组四个)相似的直角三角形,且AH•HD=BH•HE=CH•HF。5、H、A、B、C四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一—垂心组)。6、△ABC,△ABH,△BCH,△ACH的外接圆是等圆。7、在非直角三角形中,过H的直线交AB、AC所在直线分别于P、Q,则AB/AP•tanB+AC/AQ•tanC=tanA+tanB+tanC。8、三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍。9、设O,H分别为△ABC的外心和垂心,则∠BAO=∠HAC,∠ABH=∠OBC,∠BCO=∠HCA。10、锐角三角形的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的2倍。11、锐角三角形的垂心是垂足三角形的内心;锐角三角形的内接三角形(顶点在原三角形的边上)中,以垂足三角形的周长最短。12、西姆松定理(西姆松线):从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。13、设锐角△ABC内有一点T,那么T是垂心的充分必要条件是PB*PC*BC+PB*PA*AB+PA*PC*AC=AB*BC*CA。垂心的向径定义设点H为锐角三角形ABC的垂心,向量OH=h,向量OA=a,向量OB=b,向量OC=c,则h=(tanAa+tanBb+tanCc)/(tanA+tanB+tanC).垂心坐标的解析解:设三个顶点的坐标分别为(a1,b1)(a2,b2)(a3,b3),那么垂心坐标x=Δx/2/Δ,y=-Δy/2/Δ。其中,Δ=det([x2-x1,x3-x2,y2-y1,y3-y2]);Δx=det([(x1+x2)*(x2-x1)+(y1+y2)*(y2-y1),y2-y1;(x2+x3)*(x3-x2)+(y2+y3)*(y3-y2),y3-y2]);Δy=det([x3-x2,(y2+y3)*(y3-y2);x3-x1,(y3+y1)*(y3-y1)+(x2-x1)*(x1-x3)]);垂心的向量特征:三角形ABC内一点O,向量OA•OB=OB•OC=OC•OA,则点O是三角形的垂心证明由OA•OB=OB•OC,得OA•OB-OC•OB=0(OA-OC)•OB=0CA•OB=0,即OB垂直于AC边同理由OB•OC=OC•OA,可得OC垂直于AB边由OA•OB=OC•OA,得OA垂直于BC边显然点O是三角形的垂心三角形的重心重心是三角形三边中线的交点,三线交一点可用HYPERLINK"http://baike.baidu.com/view/633303.htm"\t"_blank"燕尾定理证明,十分简单。证明过程又是HYPERLINK"http://baike.baidu.com/view/148207.htm"\t"_blank"塞瓦定理的特例。HYPERLINK"http://baike.baidu.com/image/b74124f346b3250b352accb5"\o"查看图片"\t"_blank"三角形重心已知:△ABC中,D为BC中点,E为AC中点,AD与BE交于O,CO延长线交AB于F。求证:F为AB中点。证明:根据燕尾定理,S△AOB=S△AOC,又S△AOB=S△BOC,∴S△AOC=S△BOC,再应用燕尾定理即得AF=BF,命题得证。重心的几条性质:1.重心到顶点的距离与重心到对边中点的距离之比为2:1。2.重心和三角形3个顶点组成的3个三角形面积相等。3.重心到三角形3个顶点距离的平方和最小。4.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间HYPERLINK"http://baike.baidu.com/view/1539320.htm"\t"_blank"直角坐标系——横坐标:(X1+X2+X3)/3纵坐标:(Y1+Y2+Y3)/3竖坐标:(Z1+Z2+Z3)/35.重心和三角形3个顶点的连线的任意一条连线将三角形面积平分。证明:刚才证明三线交一时已证。6.重心是三角形内到三边距离之积最大的点。