如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
1.(2011·高考北京卷)如果logeq\f(1,2)x<logeq\f(1,2)y<0,那么()A.y<x<1B.x<y<1C.1<x<yD.1<y<x解析:选D.∵函数y=logeq\f(1,2)x为减函数,∴x>y.又∵底数eq\f(1,2)∈(0,1),∴当函数值小于零时,真数大于1,∴x>y>1.2.函数y=log2x的图像大致是()解析:选C.∵2>1,∴y=log2x在(0,+∞)单调递增,且图像在第一、四象限,故C正确.3.eq\f(1,5)eq\b\lc\(\rc\)(eq\a\vs4\al\co1(lg32+log416+6lgeq\f(1,2)))+eq\f(1,5)lgeq\f(1,5)等于________.解析:原式=eq\f(1,5)eq\b\lc\[\rc\](eq\a\vs4\al\co1(lg32+2+lgeq\b\lc\(\rc\)(eq\a\vs4\al\co1(eq\f(1,2)))6+lgeq\f(1,5)))=eq\f(1,5)eq\b\lc\[\rc\](eq\a\vs4\al\co1(2+lgeq\b\lc\(\rc\)(eq\a\vs4\al\co1(32·eq\f(1,64)·eq\f(1,5)))))=eq\f(1,5)eq\b\lc\(\rc\)(eq\a\vs4\al\co1(2+lgeq\f(1,10)))=eq\f(1,5)[2+(-1)]=eq\f(1,5).答案:eq\f(1,5)4.已知aeq\s\up6(\f(2,3))=eq\f(4,9)(a>0),则logeq\f(2,3)a=________.解析:因为aeq\s\up6(\f(2,3))=eq\f(4,9)(a>0),所以a=(eq\f(4,9))eq\s\up6(\f(2,3))=(eq\f(2,3))3,故logeq\f(2,3)a=logeq\f(2,3)(eq\f(2,3))3=3.答案:3一、选择题1.(2011·高考安徽卷)若点(a,b)在y=lgx图像上,a≠1,则下列点也在此图像上的是()A.eq\b\lc\(\rc\)(eq\a\vs4\al\co1(eq\f(1,a),b))B.(10a,1-b)C.eq\b\lc\(\rc\)(eq\a\vs4\al\co1(eq\f(10,a),b+1))D.(a2,2b)解析:选D.∵(a,b)在y=lgx图像上,∴b=lga,∴2b=2lga=lga2.∴(a2,2b)也在此图像上.2.若定义在区间(-1,0)内函数f(x)=log3a(x+1)满足f(x)<0,则a的取值范围是()A.(0,1)B.(1,+∞)C.eq\b\lc\(\rc\)(eq\a\vs4\al\co1(0,eq\f(1,3)))D.eq\b\lc\(\rc\)(eq\a\vs4\al\co1(eq\f(1,3),+∞))解析:选D.由于函数的定义域为(-1,0),则x+1∈(0,1),由f(x)=log3a(x+1)<0及对数函数的图像知3a>1,故a>eq\f(1,3),故选D.3.(2011·高考天津卷)已知a=log23.6,b=log43.2,c=log43.6,则()A.a>b>cB.a>c>bC.b>a>cD.c>a>b解析:选B.∵a=log23.6=log43.62=log412.96,b=log43.2,c=log43.6,函数y=log4x是(0,+∞)上的增函数,而且12.96>3.6>3.2,∴log412.96>log43.6>log43.2,即a>c>b.4.若函数y=f(x)是函数y=ax(a>0,且a≠1)的反函数,其图像经过点(eq\r(a),a),则f(x)=()A.log2xB.eq\f(1,2x)C.logeq\f(1,2)xD.x2解析:选C.反函数图像过点(eq\r(a),a),则y=ax(a>0,且a≠1)的图像过点(a,eq\r(a)),即aa=aeq\s\up6(\f(1,2)),∴a=eq\f(1,2).故f(x)=logeq\f(1,2)x.5.已知函数f(x)=|lgx|,若a≠b,且f(a)=f(b),则a+b的取值范围是()A.(1,+